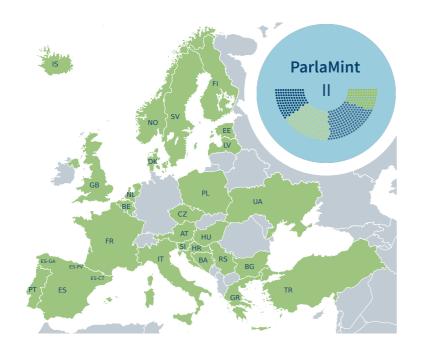
Touché'25 Task 2



Çağrı Çöltekin

Tomaž Erjavec

Katja Meden

Vaidas Morkevičius

Nikola Ljubešić

Matyáš Kopp

- Parliamentary debates result in decisions with high societal impact
- Political/parliamentary language is difficult to analyze
 - highly conventionalized
 - strategies like evasion, circumlocution or the use of metaphors are common
- This task is about identifying three fundamental aspects in political discourse
 - Political orientation: the 'classic' left-right spectrum
 - Populism index: another 'popular' dimension of recent political discourse
 - Power role: central in discourse analysis, virtually no computational studies

Task Description

Scenario: Identify the political orientation and the power role of the speaker from their speeches in parliamentary debates.

Task: Given a transcribed speech delivered in a parliament

Subtask 1: identify political orientation of the speaker (left-right)

Subtask 2: identify the position of the speaker's party in populsit–pluralist scale (4 values)

Subtask 3: identify power role of the speaker (coalition—opposition)

Data: - A subset of the ParlaMint version 4.1

- 29 national and regional parliaments (some available only for one of the tasks)
- 30 languages (also automatic translation to English)
- Date range varies by parliament, but includes at least from 2015 to 2022
- Typically long texts (approx. 600 words on average)

Results - orientation

Rank	Team	Approach	Precision	Recall	F ₁ -score		
1	Munibuc	SVM + NV-Embed-v2	0.680	0.665	0.660		
2	GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.664	0.655	0.652		
3	TüNLP	XLM-RoBERTa	0.684	0.660	0.648		
	Baseline	Logistic Regression + Char n-grams	0.661	0.597	0.570		
Only on GB							
1	Munibuc	SVM + NV-Embed-v2	0.826	0.828	0.827		
2	GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.801	0.802	0.801		
3	TüNLP	XLM-RoBERTa	0.805	0.802	0.797		
	Baseline	Logistic Regression + Char n-grams	0.770	0.771	0.770		
4	DEMA ² IN	Event Extraction + Logistic Regression	0.727	0.724	0.719		

Results - populsim

Rank	Team	Approach	Precision	Recall	F ₁ -score	
1	GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.533	0.522	0.512	
2	Munibuc	SVM + NV-Embed-v2	0.559	0.496	0.497	
	Baseline	Logistic Regression + Char n-grams	0.571	0.442	0.419	
Only on GB						
1	Munibuc	SVM + NV-Embed-v2	0.710	0.573	0.593	
2	GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.570	0.565	0.565	
3	DEMA ² IN	Event Extraction + Logistic Regression	0.560	0.556	0.558	
	Baseline	Logistic Regression + Char n-grams	0.717	0.517	0.501	

Results - populsim

Rank Team	Approach	Precision	Recall	F ₁ -score
1 GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.709	0.707	0.703
Baseline	Logistic Regression + Char n-grams	0.708	0.637	0.626
Only on GB				
1 GIL_UNAM_Iztacala	SVM/RF/LR/NB + n-grams	0.801	0.788	0.729
Baseline	Logistic Regression + Char n-grams	0.784	0.762	0.765
2 DEMA ² IN	Event Extraction + Logistic Regression	0.737	0.727	0.729

Results: observations

- Similar approaches to last year (with slightly reduced participant nunbers)
- □ Many teams used 'traditional' ML methods and (large) language models to extract features
 - likely the due to cost of processing long texts
- Finetuning a single multilingual model also seems promising
- \Box Focused participation based on event extraction from one of the teams (DEMA 2 IN)
- Populism identification proves to be most difficult
- Scores on English are much better than the average performance